OpenELAB Wiki
  • 🚀Welcome to Our Wiki!
  • 🐶M5Stack
    • M5Stack Cardputer Kit w /M5StampS3
    • M5Stack Dial - ESP32-S3 Smart Rotary Knob
    • M5StickC PLUS2 ESP32 Mini IoT Development Kit
    • M5StickC PLUS ESP32-PICO Mini IoT Development Kit
    • M5Stack Core2 ESP32 IoT Development Kit for AWS IoT Kit
    • M5Stack Core2 ESP32 IoT Development Kit
    • M5Stack AtomS3 Lite ESP32S3 Dev Kit
    • M5Stack ATOMS3 Dev Kit w/ 0.85-inch Screen
    • M5Stack ATOM TailBat - Battery Accessory for ATOM
    • M5Stack ATOM Matrix ESP32 Development Kit
    • M5Stack ATOM Lite ESP32 IoT Development Kit
    • M5Stack ATOM Echo Smart Speaker Development Ki
    • M5Stack ENV III Unit with Temperature Humidity Air Pressure Sensor
    • M5Stack COMMU Module Extend RS485/TTL CAN/I2C Port
    • M5Stack ATOMIC PoE Base W5500
    • M5Stack Time-of-Flight Distance Unit (VL53L1X)
    • M5Stack LoRa Unit with Antenna(E220)
    • M5Stack Glass 2 Unit w/ 1.51inch Transparent OLED
    • M5Stack Temperature, Humidity, Pressure and Gas Sensor (BME688)
    • M5Stack Temperature Humidity Air Pressure Sensor (SHT40+BMP280)
    • M5Stack H-bridge Unit v1.1 (STM32F030)
    • M5Stack 8-Channel Servo Driver Unit (STM32F030)
    • M5Stack ATOMIC TTL-RS485 Base
    • M5Stack ATOMIC PortABC Extension Base
    • M5Stack Ext Encoder Unita (STM32F030)
    • M5Stack Single-phase DC SSR Unit (CDG1. 1DD-10A)
    • M5Stack Speaker 2 Hat (MAX98357)
    • M5Stack Glass Unit w/ 1.51inch Transparent OLED
    • M5StickC Vibration HAT
    • M5Stack RCA Audio/Video Composite Unit
    • M5Stack Barometric Pressure 2 Unit (QMP6988)
    • M5Stack 8-Angle Unit with Potentiometer
    • M5Stack 8-Encoder Unit (STM32F030)
    • M5Stack Flashlight Unit
    • M5Stack NCIR 2 Thermometer Unit (MLX90614)
    • M5Stack M5StickV K210 AI Camera (Without Wifi)
    • M5Stack Thermal Camera 2 Unit (MLX90640) -110 Degree FoV
    • M5Stack USB TypeC2Grove Unit
    • M5Stack Scales Unit with 20kgs Range (HX711)
    • M5Stack I/O Hub 1 to 6 Expansion Unit (STM32F0)
    • M5Stack Keyboard Programmable Unit V1.1 (MEGA8A)
    • M5Stack Red 7-Segment Digit Clock Unit
    • M5Stack Mechanical Key Button Unit
    • M5Stack ESP32 Ethernet Unit with PoE
    • M5Stack Encoder Unit
    • M5Stack MQTT PoE Unit with PoE Port
    • M5Stack Unit CamS3 Wi-Fi Camera 5MP
    • M5Stack Ultrasonic Distance Unit I2C
    • M5Stack Ultrasonic Distance Unit I/O
    • M5Stack Passive Buzzer Unit
    • M5Stack 2-Channel SPST Relay Unit
    • M5Stack Tube/Air Pressure Unit
    • M5Stack MQTT Unit with RJ45 Port
    • M5Stack Gesture recognition sensor
    • M5Stack Fader Unit with B10K Potentiometer
    • M5Stack I2C Hub 1 to 6 Expansion Unit
    • M5Stack Real Time Clock (RTC) Unit
    • M5Stack OLED Unit 1.3"Display
    • M5Stack RF UNIT 433MHz Transmitter
    • M5Stack ATOM Socket Kit
    • M5Stack Watering Unit with Mositure Sensor and Pump
    • M5Stack Digital RGB LED Strip
    • M5Stack M5StickC 18650C
    • M5Stack M5StickC SERVO HAT
    • M5Stack M5StickC Fingerprint HAT
    • M5Stack M5StickC ToF HAT
    • M5Stack Mini GPS/BDS Unit
    • M5Stack Finger Print Sensor Unit
    • M5Stack DAC Converter Digital
    • M5Stack RGB LED Unit
    • M5Stack Mini 3A Relay Unit
    • M5Stack Earth Moisture Sensor Unit
    • M5Stack Color Sensor RGB Unit
    • M5Stack Mini Angle Unit Rotary Switch
    • M5Stack PIR Motion Sensor
    • HEX RGB LED Board
    • M5Stack LoRa Module (433MHz) v1.1
    • M5Stack ATOMS3R Camera Kit
    • M5Stack ATOMS3R Development Kit
    • M5Stack Roller485 Lite Unit
    • M5Stack ATOMS3R Proto Kit
    • M5Stack M5Stamp Fly with M5StampS3
    • M5Stack M5Atom Joystick with M5AtomS3
    • M5Stack ATOMS3R Camera (OV3660)
    • M5Stack Battery Module
    • M5Stack Unit Cam Wi-Fi Camera
    • M5Stack PIR Motion Sensor
    • M5Stack RFID 2 Unit
    • M5Stack Mini Dual
    • M5StickV K210 AI Camera
    • M5Stack Glass 2 Unit
    • Hall Effect Unit
    • Voltage and Amperage Meter
    • M5Stack ENV Pro Unit
    • NCIR 2 Thermometer Unit
    • M5GO Battery Bottom2
    • M5Stack USB Module
    • M5Stack LoRa Module
    • M5Stack LLM Module
    • M5Stack Timer Power Unit
    • M5Stack 8-Encoder Unit
    • M5Stack LoRa Module
    • M5Stack 8-Angle Unit
    • Gesture recognition sensor
    • M5StickC ENV III HAT
    • M5StickC DAC 2 Hat
    • M5Stack Color Sensor
    • Time-of-Flight Distance
    • M5StickC ToF HAT
    • Neo HEX 37 RGB LED
    • M5Stamp ESP32S3
    • Tube/Air Pressure
    • 8-Channel Servo Driver
    • M5Stack Mini Angle Unit
    • M5Stack Mini Infrared Emitter
    • M5Stack NanoC6 Dev Kit
    • M5Stack ENV III Unit
    • Temperature Humidity Air Pressure
    • M5Stack 2-Channel SPST
    • M5Stack BLDC Motor
    • M5Stack Ultrasonic
    • M5Stack M5Stamp
    • M5Stack DAC
    • M5Stack Mini CAN Unit
    • M5Stack Ambient Light Sensor
    • M5Stack PIR Hat
    • M5Stack Speaker
    • M5Stack Weight
    • M5Stack Core2
    • M5StickC PLUS
    • M5Stack Barometric Pressure
    • M5Stack Ambient Light Sensor
    • M5Stack Passive Buzzer
    • M5Stack Mechanical Key Button
    • M5Stack Limit Switch
    • M5StickC Vibration HAT
    • PM5Stack RCA Audio/Video
    • M5Stack Flashlight
    • M5Stack COMMU Module Extend
    • M5Stack M5StampS3 with 1.27 Header Pin
    • M5Stack M5StampS3 with 2.54 Header Pin
    • ATOMIC Barcode/QR-Code Scanner
    • M5Stack Station ESP32 IoT
    • M5Stack ESP32 Core Ink
    • M5Paper ESP32 Development Kit
    • ATOMIC CANBus Base
    • M5Stack M5StickC ADC Hat
    • M5Stack LoRa
    • M5Stack H-bridge
    • ATOMIC GPS Base
    • M5Stack Ext Encoder
    • M5Stack Single-phase DC SSR
    • M5Stack Glass Transparent OLED
    • M5Stack Thermal Camera
    • M5Stack USB TypeC2Grove
    • M5Stack I/O Hub
    • M5Stack CardKB Mini Keyboard
    • M5Stack Red 7-Segment Digit Clock
    • M5Stack Extend I/O
    • M5Stack I2C Joystick
    • M5Stack ESP32 Ethernet
    • M5Stack 8-Channel Servo Driver
    • M5Stack Encoder
    • M5Stack MQTT PoE
    • M5Stack Ultrasonic
    • M5Stack I2C Hub
    • M5Stack MQTT
    • M5Stack Fader
    • M5Stack Real Time Clock
    • M5Stack OLED
    • M5Stack RF Unit
    • M5Stack Watering Unit
    • M5Stack Digital RGB LED
    • M5Stack JoyC Omni-directional Controller
    • M5Stack SERVO HAT
    • M5Stack Fingerprint HAT
    • M5Stack Finger Print Sensor
    • M5Stack RGB LED
    • M5Stack Mini 3A Relay
    • M5Stack Earth Moisture Sensor
    • M5Stack 1 to 3 HUB Expansion
    • M5Stack RS485 to TTL Converter
    • HEX RGB LED Board
    • M5Stack LoRa 433MHz with Antenna
    • M5Stack NB-IoT with Antenna
    • M5Stack Battery Bottom 110mAh
    • M5Stack Programmable Power Supply Module
    • M5Stack LAN Module
    • M5Stack RCA Audio/Video Module
    • M5Stack LAN Module W5500
    • M5Stack IoT Base
    • M5Stack AC Power Base
    • M5Stack GRBL Module Stepmotor Driver
    • M5Stack COM.LTE Module
    • M5Stack Proto Pegboard Module
    • M5Stack BaseX EV3 motor
    • M5Stack Proto Module
    • M5Stack M5GO/FIRE Battery
    • M5Stack PoE Camera with Wi-Fi
    • M5Stack UnitV K210 AI Camera
    • M5Stack UnitV2 M12 with Cameras
    • M5Stack ESP32 PSRAM Timer Camera Fisheye
    • M5Stack ESP32 PSRAM Timer Camera
    • M5Stack Universal IOT Experiment Kit
    • M5Stack Scale Kit
    • M5Stack AGV Mini Carkit Mecanum Wheels
    • M5Stack 6060-PUSH Linear Motion Control
    • M5Stack BugC2 w/ M5StickC PLUS2
    • M5Stack RoverC Pro
    • M5Stack BALA2 Fire Self-balancing Robot Kit
    • M5Stack 16 PCS M3 Screw
    • M5Stack Unbuckled Grove Cable
    • M5Stack RS485T T-Shaped Connector
    • M5Stack CM4Stack Development
    • M5Stack CoreS3 ESP32S3 loT Development
    • M5Stack M5StickC PLUS2 with Watch Accessories
    • M5Stack Mini GPS/BDS
    • M5Stack M5Stick T-Lite Thermal Camera
    • M5Stack UnitV2 - The standalone AI Camera
    • M5Stack ESP32 Fisheye Camera
    • M5Stack Voltage and Amperage Meter
    • M5Stack CardKB Mini Keyboard
    • M5Stack M5Stamp C3 (5pcs)
  • 🐹ESP
    • ESP8266EX
    • ESP8266 ESP-01S WiFi module
    • ESP32-WROOM-32E
    • ESP32-WROOM-32 Wifi Bluetooth Type-C Dev Kit
    • ESP32-S3-WROOM-1U
    • ESP32-S3-Nano - Development Board
    • ESP32-S3 Rotary Switch LCD 2.1 inch Round LCD Screen
    • ESP32-PICO-D4
    • ESP32-H2
    • ESP32-CAM Camera Module
    • ESP32-C6
    • ESP32 NODEMCU Module WiFi Development Board with CP2102
    • ESP32 D1 Mini Nodemcu Development Board
    • D1 Mini Nodemcu with ESP8266-12F WLAN module
    • D1 Mini V3 Nodemcu with ESP8266-12F WLAN module
    • Seeed Studio XIAO ESP32S3 WIFI Dev Board
    • XIAO SAMD21 Arduino Microcontroller
    • XIAO RP2040
    • XIAO ESP32-C3 WIFI
    • XIAO ESP32-C6 WIFI
    • 6x10 RGB MATRIX
    • XIAO nRF52840 Sense
  • 🐭DRONE / FPV
    • ZD850 850mm Compact Folding Hexacopter Drone Frame Kit Full Carbon Fiber
    • DXW 4114 400KV High Power Brushless Motors
    • DXW D4250 800KV 3-7S Brushless Motor
    • DXW D3536 1200KV 2-4S Brushless Motor
    • DXW A2212/C2826 3.17mm Outrunner Brushless Motor
    • Hobbywing Skywalker V2 Brushless ESC Speed Controller
    • Pixhawk PX4 Flight Controller
    • Holybro Pixhawk 6C
    • GPS Stand
    • Holybro GPS M8N
    • Holybro GPS M9N
    • Holybro GPS M10N
    • Radiolink M8N SE100 GPS Module
    • Radiolink M10N SE100 GPS for PX4/Pixhawk 2.4.8
    • Mateksys GNSS M9N-5883
    • MFD Crosshair Color OSD
    • 2 Pair Carbon Fiber CW CCW Propellers
    • 3-Axis Brushless Gimbal Frame With Motors & Storm32 Controller
    • 2-Axis Brushless Gimbal Frame With Motors & Storm32 Controller
    • RadioLink AT10 II 2.4Ghz 10CH RC Transmitter
    • Radiolink Mini PIX V1.2 Flight Controller M10N GPS TS100 SE100 (Pixhawk Alternative)
    • 2Pcs OVONIC 3S 4S 6S Lipo Battery For RC FPV
    • Gens ACE Lipo Battery with T/XT60 Plug
    • LiPo Battery 3S 11.1V for RC Drone
    • Holybro PM02 V3 Power Module 12S
    • Holybro PM06 V2 Power Module 14S
    • Holybro PM07 V2 Power Module 14S
    • Holybro Power Distribution Board (PDB)
    • Mateksys Power Distribution Board (PDB) XT60 W/ BEC 5V & 12V
    • Hawk eye FPV Monitor 5.8G 48CH 4.3 inch FPV HD Monito
    • RUSH TANK MAX SOLO 5.8GHz 2.5W High Power 48CH VTX Video Transmitter
    • RUSH TANK SOLO 5.8G VTX Video Transmitter CNC shell 1.6W
    • Happymodel EP1 Dual Receiver 2.4Ghz ExpressLRS RX
    • Mateksys BEC12S-PRO, 9-55V TO 5V/8V/12V-5A
    • ZD850 850mm 6-axis Drone with 6kg Payload
    • ZD550 550mm 4-axis Drone with 6kg Payload
    • YRRC 5.8G 2.5W 40CH VTX Drone FPV Analog Image Transmission
    • Hawkeye Firefly 8SE/8S 4K Screen WiFi FPV Action Camera
  • 🐰RASPBEERY PI
    • Raspberry Pi Pico W Wireless RP2040 MCU Board
    • Raspberry Pi 5
    • Raspberry Pi 4B
    • ELAB Raspberry Pi Card Reader
    • ELAB Raspberry Pi 5 Active Cooler
    • ELAB Raspberry Pi 4/5 Case (Acrylic case)
    • ELAB Raspberry Pi 4 Heat Sink (Copper)
    • Camera for Raspberry Pi
    • XIAO RP2350 Onboard RGB LED, Arm Cortex-M33 and Hazard3 RISC-V(Pre-Order)
    • Raspberry Pi Pico 2 RP2350
    • Seeed Studio Grove Starter Kit for LinkIt ONE
    • Seeed Studio ReSpeaker USB Mic Array
    • Raspberry Pi Zero 2W with Bluetooth 4.2 Onboard Antenna
    • Raspberry Pi Zero WH WiFi/Bluetooth 4.1 Bluetooth Low Energy
    • Seeed Studio XIAO RP2040 Supports Arduino
    • M.2 HAT for Raspberry Pi 5
    • EdgeBox Raspberry Pi IoT Edge Device 4GB RAM 32GB eMMC WiFi
    • Raspberry Pi Compute Module 4 with WiFi
    • Raspberry Pi 4 ReSpeaker Intelligent Speech Recognition 2 Microphone
    • Raspberry Pi 5 Vision Car AI Development Board Camera Recognition WIFI Kit
    • Waveshare RM500U-CNV Raspberry PI 5G/4G/3G Hat
    • Hailo-8 M.2 AI Accelerator Module Suitable for Raspberry Pi 5
    • Waveshare ESP8266 for Raspberry Pi Pico Wifi Module TCP UDP
    • Waveshare MAX-M8Q GNSS HAT for Raspberry Pi
    • Waveshare SX1262 LoRa HAT for Raspberry UART
    • Waveshare SX1268 LoRa HAT for Raspberry UART
    • Waveshare SIM7070G NB-IoT / Cat-M / GPRS / GNSS HAT for Raspberry Pi
    • Waveshare SIM7600G-H M.2 4G HAT for Raspberry Pi 4G/3G/2G GNSS
    • Waveshare SIM7600CE-CNSE 4G HAT for Raspberry Pi 4G 3G 2G GNSS
  • 🦊ARDUINO
    • ATmega328DIP Board Microcontroller Board
    • OpenELAB EASY PLUG RGB TCS34725 Color Sensor Module I2C
    • OpenELAB EASY PLUG Micro SD TFT card Read and Write Module
    • OpenELAB EASY PLUG CCS811 CO2 Air Quality Sensor
    • OpenELAB EASY PLUG SR01 Ultrasonic Sensor
    • OpenELAB EASY PLUG Education Robot Car Kit
    • OpenELAB EASY PLUG Sensor Learning Kit for Arduino
    • OpenELAB EASY PLUG Ultimate Starter Kit for Arduino
    • OpenELAB KEYBOT Programmable Education Robot Control Board
    • OpenELAB RJ11 EASY Plug Main Control Upgrade Board V2.0
    • OpenELAB Desktop Mini Bluetooth Smart Robot Car Kit V3.0
    • OpenELAB 4WD Mechanical Arm Robot Smart Car for Arduino
    • OpenELAB 4DOF Mechanical Arm Robot Car Learning Starter Kit
    • OpenELAB 4WD Mechanical Arm Robot Smart Car for Arduino
    • OpenELAB Desktop Mini Bluetooth Smart Robot Car Kit V3.0
    • OpenELAB RJ11 EASY Plug Main Control Upgrade Board V2.0
    • OpenELAB KEYBOT Programmable Education Robot Control Board
    • OpenELAB EASY PLUG Ultimate Starter Kit for Arduino
  • 🐻DISPLAYS
    • 1.3 inch OLED I2C 128 x 64 Pixel Display
    • 0.91 inch OLED I2C Display 128 x 32 pixels
    • WT32S3-86S touch display screen with temp and humidity sensor
    • LCD Display 1602 I2C
    • HW-140 DC-DC Buck Boost Converter Step Up/Down, LCD display
    • HD44780 2004 LCD Display Bundle 4x20 characters
    • ESP32-S3 Rotary Switch LCD 2.1 inch Round LCD Screen
    • 8*8 Matrix LED Display Module
    • 4 digit 7-segment LED Display
    • 3.5-inch 320x480 resistive touch display
    • 3.5-inch 320x480 capacitive touch display
    • 1.77 inch Spi TFT Display and 128x160 Pixels
    • 1.8 inch Spi TFT Display 128 x 160 pixels
    • 1 Digit 7-Segment LED Display 1 inch 25.4 mm
    • 0.96 inch OLED SSD1306 Display I2C 128 x 64 pixels
    • Waveshare 10.1 inch IPS Capacitive Touch Display
    • Waveshare 10.1 inch QLED Touch Display
    • Waveshare 9.7 inch IPS Capacitive Touch Display
    • Waveshare 10.1 inch IPS Capacitive Touch LCD
    • Waveshare 9.3 inch LCD Capacitive Touch Display High Brightness
    • Waveshare 9 inch QLED Quantum Dot Display
    • Waveshare 8 inch 2K IPS Capacitive Touch Display
    • Waveshare 8DP-CAPLCD 8 inch Capacitive Touch Display
    • Waveshare 7.9 inch IPS LCD Touch Screen, 400×1280 HDMI
    • Waveshare 8 inch DSI LCD Display Touch Screen I2C
    • Waveshare 7 inch IPS Integrated Display, With Touch Function
    • Waveshare 7HP-CAPQLED 7 inch QLED Quantum Dot Display
    • Waveshare 7 inch Capacitive Touch Screen HDMI
    • Waveshare 7 inch Capacitive Touch Screen with Case HDMI
    • 2.8inch USB Monitor,Water Cooler Screen/ PC Case Secondary Screen
    • Waveshare 5inch Desktop RGB Ambient Screen
    • Waveshare 5inch IPS Round Touch DisplayHDMI
    • Waveshare 5.5inch 2K Touch LCD Display HDMI
    • 2.1 inch USB Monitor, Water Cooler Screen/ PC Case Secondary Screen
    • Waveshare 8.8inch Desktop RGB Ambient Screen Type-C
    • Waveshare 8inch Desktop RGB Ambient Screen Type-C
    • Waveshare 7 inch Desktop RGB Ambient Screen
    • Waveshare 5inch HDMI Touch Screen LCD with Bicolor Case
    • Waveshare 65K RGB General 1.28inch Round LCD Display Module
    • 0.96 inch OLED Display Module, SPI / I2C Communication
    • 1.5 inch LCD Display Module, IPS Panel SPI 262K colors
    • Waveshare 1.8inch colorful display module for micro:bit
    • Waveshare 3.5inch RPi LCD (A)
    • Waveshare 5 inch LCD Touch Screen Display for Raspberry Pi
    • Waveshare 1.47inch LCD Display Module SPI
    • 7.3 inch 7 Color E-Paper
    • Waveshare 15.6 inch QLED Touch
    • Waveshare 7.5 inch NFC-Powered
  • 🐨CAMERAS
    • OV5640 Camera Board (A), 5 Megapixel (2592x1944)
    • OV2640 Camera Board (1622x1200)
    • Hawkeye Firefly 8SE/8S 4K Screen WiFi FPV Action Camera
    • ESP32-CAM Camera Module
    • DFRobot Gravity Huskylens AI Camera
    • IMX335 5MP USB Camera (B)
  • 🐯SENSORS
    • Rotation Sensor
    • WT32S3-86S touch display screen with temp and humidity sensor
    • Vibration Sensor
    • Ultrasonic Sensor
    • Thermistor Module
    • Soil Temperature and Humidity Module
    • Soil Moisture Sensor Hygrometer Module V1.2 capacitive
    • Shock Sensor Module
    • MQ-135 Gas Sensor
    • Motion Sensor Motion Detection Module HC-SR501 PIR
    • DHT11 Temperature-Humidity Sensor
    • DHT22 AM2302 Temperature sensor and humidity sensor
    • Current Sensor ACS712ELC-20A
    • VL53L0X Time-of-Flight (TOF) Laser distance sensor
    • GY-521 MPU-6050 3-axis gyroscope and acceleration sensor
    • DS18B20 digital temperature sensor
    • BME280 Humidity Pressure Temperature Sensors
  • 🦁IOT / COMMUNICATION
    • NodeMCU Lua Amica Module V2 ESP8266 ESP-12F WIFI
    • SIM7028 NB-IoT HAT
    • NRF24L01 with 2.4 GHz
    • Ai-Thinker AiPi-Eyes-S1 WifFi Camera
    • Ai-Thinker AiPi-Eyes-S2 WifFi Camera
  • 🐮MOTORS
    • CyberGear micromotor instruction manual
    • Servo Motor (SG90)
    • 5V DC Stepper Motor & ULN2003 Driver Board
    • 130 DC Motor
    • Xiaomi CyberGear Micromotor
  • 🐧Seeed Studio
    • XIAO SAMD21 Arduino Microcontroller
    • XIAO RP2040
    • XIAO nRF52840
    • XIAO nRF52840 Sense
    • XIAO ESP32C3 RISC-V Wi-Fi BLE 5.0
    • XIAO ESP32S3
    • XIAO ESP32S3 Sense
    • XIAO ESP32-C6 Dev Board
    • XIAO RP2350 Raspberry Pi
    • XIAO RA4M1 Smallest Dev Board
    • XIAO MG24
    • XIAO MG24 Sense
    • reComputer J4011B Edge AI Computer
    • SenseCAP Card Tracker
    • Wi-Fi HaLow Board based on FGH100M-H
  • 🇰🇳KITS
    • mBot Mega
  • ⚡POWER
    • HW-140 DC-DC Buck Boost Converter Step Up/Down, LCD display
    • MT3608 DC-DC power supply adapter step up module
    • LM2596S Step-down DC-DC Buck Converter
    • LM2596S DC-DC power supply adapter step down module
    • Hi-Link DC-DC 5V to xxV 1W Mini Converter Isolated Power Supply
    • Hi-Link AC-DC 5W Converter Power Supply
    • Hi-Link AC-DC 220V to xxV 3W Converter Power Supply
    • SunLit Austa Solar Module
  • 🔌ACCESSORIES
    • 4 digit 7-segment LED Display
    • 5V LED Traffic Signal Module
    • LED Ring 5V RGB WS2812B 12-Bit 50mm
    • 3D MKS Gen V1.4 Printer
    • USB 3.2 To 5GbE Adapter (WP-UT5) Realtek RTL8157
  • Heygears Reflex User Guide
Powered by GitBook
On this page
  • Waveshare SIM7600CE-CNSE 4G HAT for Raspberry Pi 4G 3G 2G GNSS
  • Product Link
  • Introduction
  • Features
  • Specifications
  • Pinout
  • Dimensions
  • How to Use
  • FAQ

Was this helpful?

PreviousWaveshare SIM7600G-H M.2 4G HAT for Raspberry Pi 4G/3G/2G GNSSNextARDUINO

Last updated 9 months ago

Was this helpful?

Waveshare SIM7600CE-CNSE 4G HAT for Raspberry Pi 4G 3G 2G GNSS


Product Link

Introduction

The SIM7600CE-CNSE 4G HAT is a hardware accessory designed for use with compatible development boards or microcontrollers. It is a communication module that provides 4G connectivity, allowing devices to access the internet and cellular networks. The "HAT" in its name stands for "Hardware Attached on Top," which indicates that it is designed to be easily attached to the top of a development board, such as a Raspberry Pi, providing additional functionality. The SIM7600CE-CNSE specifically refers to the model of the 4G module, which is manufactured by SIMCom, a company that specializes in wireless communication modules. This particular module supports various cellular network standards and can be used for a wide range of applications, including IoT devices, remote monitoring systems, and more.

Features

  • 40PIN GPIO extension header for connecting Jetson Nano.

  • Supports dial-up, telephone calls, SMS, mail, TCP, UDP, DTMF, HTTP, FTP, etc.

  • Supports GPS, BeiDou, Glonass, and LBS base station positioning.

  • Onboard USB interface, to test AT Commands, get GPS positioning data, and so on.

  • Breakout UART control pins, to connect with host boards like Arduino/STM32.

  • Onboard CP2102 USB to UART converter, for serial debugging.

  • SIM card slot, supports 1.8V/3V SIM card.

  • Onboard TF card slot, which can be used to store files, text messages, and other data.

  • Onboard audio jack and audio decoder chip, for making telephone calls.

  • 2 x LED indicators, easy to monitor the working status.

  • Onboard voltage translator, the operating voltage can be configured to 3.3V or 5V via jumper.

  • Baudrate: 300bps ~ 4Mbps (default: 115200bps)

  • Autobauding baudrate: 9600bps ~ 115200bps.

  • Comes with online resources and manuals (example demos such as Raspberry/Jetson Nano/Arduino/STM32).

Specifications

Pinout

Dimensions

How to Use

RPi Demo

Hardware Connection

pin connection diagram with Raspberry Pi

SIM7600X 4G HAT has onboard Raspberry Pi GPIO interface, which can be directly inserted into various versions of Raspberry Pi; the following table shows the connection between Raspberry Pi pins and module pins (Raspberry Pi 3rd Generation B+):

SIM7600X 4G HAT
Raspberry Pi

5V

5V

GND

GND

RXD

TXD (corresponding to 14 of BCM)

TXD

RXD (corresponding to 15 of BCM)

PWR

P22 (corresponding to P6 of BCM)

FLIGHTMODE

P7 (corresponding to P4 of BCM), enter flight mode when pulled high

* FLIGHTMODE is wired to pull up and will enter into flight mode.

Raspberry Pi initialization settings

To ensure that the SIM7600X 4G HAT can work normally after being connected to the Raspberry Pi, it is necessary to initialize the level output of some pins of the Raspberry Pi. The specific operations are as follows:

  • The command line enters the /home/pi/SIM7600X directory and executes the command.

chmod 777 sim7600_4G_hat_init
  • Set the boot initialization script, and run the command:

sudo nano /etc/rc.local
  • Add before exit 0 (as shown below):

sh /home/pi/SIM7600X/sim7600_4G_hat_init

Raspberry Pi serial port configuration

Since the Raspberry Pi serial port is used for terminal debugging by default, if you need to use the serial port, you need to modify the Raspberry Pi settings. Execute the following command to enter the Raspberry Pi configuration:

sudo raspi-config

Select Interfacing Options -> Serial -> no -> yes to disable serial debugging. Open the /boot/config.txt file, and find the following configuration statement to enable the serial port, if not, add it at the end of the file:

enable_uart=1

Restart to take effect.

Raspberry Pi minicom serial port debugging

1. Insert the module into the Raspberry Pi. 2. Install minicom, which is a serial debugging tool for the Linux platform:

sudo apt-get install minicom

3. Execute minicom -D /dev/ttyS0 (ttyS0 is the serial port of Raspberry Pi 3B/3B+/4B). The default baud rate is 115200. Raspberry Pi 5/2B/zero, the user serial device number is ttyAMA0, and the Raspberry Pi 3B/3B+/4B serial device number is ttyS0. 4. Take the AT synchronization test as an example, and send relevant commands, as shown in the following figure: * minicom can enter setting mode by pressing Ctrl+A, then Z, and select X to exit. 5. Raspberry Pi 5 configures the ttyS0 serial port:

  • Edit config.txt file:

 sudo nano /boot/config.txt
  • Add the following and the statement at the end.

 dtoverlay=disable-bt
  • You can see ttyS0 after restarting.

Sample Demo

1. Insert the module into the Raspberry Pi. 2. Download the sample demo to the /home/pi/ path:

wget https://files.waveshare.com/upload/2/29/SIM7600X-4G-HAT-Demo.7z
sudo apt-get install p7zip-full
7z x SIM7600X-4G-HAT-Demo.7z -r -o/home/pi
sudo chmod 777 -R /home/pi/SIM7600X-4G-HAT-Demo

3. Go to the bcm2835 directory, compile, and install it.

chmod +x configure && ./configure && sudo make && sudo make install

Note: If there is a problem with the compilation, please refer to the instructions in the FAQ. 4. Go to the corresponding instance directory, compile, and run the demo. The relevant instructions are as follows (take the PhoneCall demo as an example):

sudo make clean //Clear the original executable file
sudo make //recompile
sudo ./PhoneCall //Run the demo

Use a combination of the above commands:

sudo make clean && sudo make && sudo ./PhoneCall

PHONECALL Call Demo

SMS Text Message Sending and Receiving Demo

GPS Positioning Demo

TCP Network Communication Demo

FTP Download and Upload Demos

Arduino Demo

Hardware Connection

Hardware connection to the development board UNO PLUS/Arduino UNO:

SIM7600X 4G HAT
UNO PLUS/Arduino UNO

5V

5V

GND

GND

TXD

0 (RX)

RXD

1 (TX)

PWR

2

Install Arduino library

Download the decompression sample demo. Copy the Waveshare_SIM7600X_Arduino_Library folder to the Library directory under the Arduino IDE installation path. Open Arduino IDE --> File --> Examples --> Waveshare SIM7600X, and then choose to run the corresponding example demo:

Sample Demo

PHONECALL Call Demo

SMS Text Message Sending and Receiving Demo

GPS Positioning Demo

TCP Network Communication Demo

FTP Download and Upload Demo

Jetson Nano Demo

Hardware Connections

Connection diagram

Jetson Nano has an onboard RaspberryPi 40Pin GPIO interface, SIM7600X 4G HAT can be directly connected and used, and Jetson Nano's terminal access the serial port does not affect serial communication with SIM7600X 4G HAT (ie. Pin10 and Pin8).

SIM7600X 4G HAT
Jetson Nano

5V

5V

GND

GND

TXD

10 (Board encoding)

RXD

8 (Board encoding)

PWR

31 (Board code)

Jetson Nano minicom serial port debugging

sudo apt-get install minicom

3. Run minicom to debug the serial port, and enter in the terminal.

sudo minicom -D /dev/ttyTHS1 -b 115200

4. Send the AT command to test, press the PWRKEY button for three seconds to start the shutdown, exit the minicom and press Ctrl+A, then X, and finally press ENTER.

Python Demos

After installing the library:

sudo apt-get install python3-pip
sudo pip3 install pyserial
sudo apt-get install p7zip

Use the wget tool to download the source code to the specified folder of Jetson Nano, and copy the following command:

mkdir -p ~/Documents/SIM7600X_4G_HAT
wget -P ~/Documents/SIM7600X_4G_HAT/ 

Enter the directory where the source code was just created and downloaded, and use the p7zip tool to unzip it to the current directory.

cd ~/Documents/SIM7600X_4G_HAT/
sudo p7zip --uncompress SIM7600X-4G-HAT-Demo.7z

AT

SIM7600X_4G_HAT is connected to Jetson Nano, connected to the antenna, the demo uses the software to power on and off, there is no need to press the button to power on and off, and when you exit, press Ctrl+C to power off the software. Enter the Jetson Nano/AT directory and execute the command:

cd ~/Documents/SIM7600X_4G_HAT/Jetson\ nano/AT/
sudo python3 AT.py

GPS

SIM7600X_4G_HAT is connected to the Jetson Nano and GNSS antenna. The routine uses software to power on and off. There is no need to press the button to power on and off. When exiting, press Ctrl+C to power off the software. Enter the Jetson Nano/GPS directory and execute the command:

cd ~/Documents/SIM7600X_4G_HAT/Jetson\ nano/GPS/
sudo python3 GPS.py

PhoneCall

SIM7600X_4G_HAT is connected to Jetson Nano, the main antenna, and the earphone. The demo uses software to power on and off, no need to press the button to switch on and off. This demo uses the mobile card to automatically dial 10086. Press Ctrl+C when exiting, and the software will start to Shut down. Enter the Jetson Nano/PhoneCall directory and execute the command:

cd ~/Documents/SIM7600X_4G_HAT/Jetson\ nano/PhoneCall/
sudo python3 PhoneCall.py

SMS

The SIM7600X_4G_HAT is connected to the Jetson Nano and the main antenna. The demo uses the software to turn it on and off, and there is no need to press the button to turn it on and off. This demo will automatically shut down the software after sending the information www.waveshare.com to the specified number. When users use SMS routines, they must first use tools such as vim to change the number in line 10 of the SMS.py file, replace * with a number, and keep the ' symbol. Enter the Jetson Nano/SMS directory and execute the command:

cd ~/Documents/SIM7600X_4G_HAT/Jetson\ nano/SMS/
sudo python3 SMS.py

TCP

The SIM7600X_4G_HAT is connected to the Jetson Nano and the main antenna. The demo uses the software to turn it on and off, and there is no need to press the button to turn it on and off. Enter the Jetson Nano/TCP directory and execute the command:

cd ~/Documents/SIM7600X_4G_HAT/Jetson\ nano/TCP/
sudo python3 TCP.py

More sample demos are continuously updated...

FAQ

Download , after decompression, rename the c folder under the Raspberry folder to SIM7600X, Then copy the entire SIM7600X folder to the Raspberry Pi /home/pi directory.

1. Connect the SIM7600X 4G HAT to the Jetson Nano, press the PWRKER button for three seconds, and then turn it on. 2. , install minicom, and enter:

  • Execute autoreconf -vfi, and then recompile, see the figure below:

1. Pay attention to check the device manager, the upgrade process will prompt the new device inserted, and the first upgrade will not have a device driver; 2. Pay attention to the USB cable, the USB cable rate is high during the upgrade process, so you need to choose a better quality USB cable to avoid poor contact. 3. Need to run the upgrade tool with administrator privilege (SIM7500_SIM7600_QDL V1.41 only for Update). 4. Uninstall and reinstall the update tool (SIM7500_SIM7600_QDL V1.41 only for Update).

You can refer to two ways, the detailed steps refer to the following:

The new driver may not be compatible with some WIN7 systems, you can try the old driver:

  • 1. Download the driver.

  • 2. Connect the 4G HAT to a Windows computer as shown in the hardware connection diagram above (Windows 10 OS is used as an example below)

  • 3. Make sure the module has been powered on properly: refer to the previous section "Switching on and off the module"

  • 4. Open Device Manager->Other Devices->"SimTech, Incorporated "-> Update Driver -> Browse My Computer to find the driver file -> According to the system, select the path where the driver file is stored -> Installation is complete.

  • 5. Install all the recognized devices and drivers:

  • Make sure your system kernel is above 5.4. Do not use sudo update to upgrade the Raspberry Pi to the latest version, otherwise, the kernel version will be upgraded to a version higher than the current firmware and will not be recognized.

  • You can burn the latest Raspberry Pi Raspbian system and reconfigure the NDIS dial-up

Use the following commands:

echo "4" > /sys/class/gpio/export
echo "out" > /sys/class/gpio/gpio4/direction
echo "0" > /sys/class/gpio/gpio4/value
echo "6" > /sys/class/gpio/export
echo "out" > /sys/class/gpio/gpio6/direction
echo "0" > /sys/class/gpio/gpio6/value

Answer:As shown below:

1) /dev/ttyUSB0-diag port for output developing messages
2) /dev/ttyUSB1- NMEA port for GPS NMEA data output
3) /dev/ttyUSB2-AT port for AT commands
4) /dev/ttyUSB3-Modem port for ppp-dial
5) /dev/ttyUSB4-Audio port

The following command can be used to detect the presence of Qualcomm Qualcomm devices, and if a COM driver has been loaded (the Raspberry Pi system generally comes with it), a series of ttyUSB* will also appear:

lsusb
ls /dev/ttyUSB*
  1. The AUX auxiliary antenna is a diversity antenna, the main antenna signal is not good enough to receive the signal with the receiving antenna, and the physical location is not the same, there is always a better, diversity antenna connected to the bandwidth and rate sensitivity will be increased by about 20%.

  2. No diversity antenna can make the receiver obtain a maximum of not more than 3db diversity gain, but the diversity does not line any transmitting function, so to connect to the main antenna, transmit the signal to the base station registered to the network, the auxiliary antenna will only work.

Please put the jumper cap on C and connect the USB TO UART interface of SIM7600X to the USB port of a computer or Linux board such as Raspberry Pi through USB type to micro USB to send commands to debug:

  • Frequency: 700m 800m 900m 1710-1920M 2010-2100M 2300-2400M 2500-2690M-5800MHZ

  • Gain: 9dbi ± 0.7db

Open at the same time, average: 110~170mA

Using a USB 5V power supply, after successful networking, the current is generally in the range of 50~300mA, and the average is about 150mA (for reference only, depending on the network environment and networking status.

  • Confirm whether the frequency band supported by the IoT card covers the frequency band supported by the module.

  • APN is not set, please use the following command to configure APN.

  • Note: Different operators' APNs is different, here the APN is changed to the corresponding operator.

  • It may be blocked, high traffic (real-name IoT) cards are going to be machine card binding, and can only be used on a device (the State Ministry of Industry and Information Technology, Ministry of Public Security, issued to the operator must be so); you can let the IoT card operator check the status of the card and unlock the next.

This problem is generally caused by poor contact between the SIM card and the SIM card holder of the module.

  • Confirming that the SIM7600X is registered to the network and that the SIM card can send and receive SMS messages properly on devices such as cell phones;

  • Setting the correct SMS center number;

  • Initialize the SMS settings with the following command:

AT+CSCS="IRA"
AT+CSMP=17,167,
AT+CSCA="+8613800755500"

The command should be added + enter to return OK.

If the short message is stored in the SIM card, the limit is generally 50. You can use the command: AT+CPMS? make an inquiry.

SIM7600X makes a call and the phone answers
ATD131xxxxx816.

Record SIM7600 and phone sound to module memory E disk (record to memory card read D)
AT+CREC=3, "e:/rec.wav"   

End recording
AT+CREC=0

Play sound to the phone side to listen
AT+CCMXPLAYWAV="E:/rec.wav",1

Play sound to SIM7600
AT+CCMXPLAYWAV="E:/rec.wav",2

End playback
AT+CCMXSTOP

The VOLTE function can be enabled with the following command:

at+voltesetting=1
at+cnv=/nv/item_files/modem/mmode/ue_usage_setting,1,01,1

The VOLTE function can be disabled with the following command:

at+voltesetting=0
at+cnv=/nv/item_files/modem/mmode/ue_usage_setting,0,01,1

Note: The difference between Volte calls and regular phone calls: The network of Microsoft calls goes on a packet-switched Internet network. And ordinary phone calls take the circuit-switched (PSTN network) communication network. There is a fundamental difference between the two. By the time of 4G LTE, the packet network can control the delay to low enough, and ordinary phones can make calls directly through VOLTE with the packet network. However, in places where the network is poor, circuit-switched networks are still inseparable.

Common commands for the LBS base station positioning function of SIM7600X are as follows:

AT+CLBS=? //View the range of parameters that can be set
AT+CNETSTART//Open the network; if it fails to open the network, you can use the command AT+CNETSTOP to close and then open
AT+CLBS=1 //Get the current latitude and longitude
AT+CLBS=2 //Get the detailed address

After turning on the GPS in the AT debug serial port, turn on the NMEA port to get the dynamic information.

GNSS parameter problem, after restarting the module, initialize the GNSS parameters with the following command can be;

AT+CGPSNMEA=197119

Or you can use the following commands to obtain the position information.

AT+CGPSINFOCFG=10,31

  • Generally, the default configuration of SIM7600 is to automatically select the network standard, and it is likely to choose 2G Internet access; if you need to force the use of 4G mode, you need to enter the following AT command configuration:

AT+CNMP=38    //Fixed 4G LTE, if there is no local 4G coverage, you may not be able to register to the network
  • If 4G has been fixed and the speed is still not ideal, it may be a frequency band problem;

AT+CNBP?  //Backup the current band (the returned band information can be copied to Notepad, etc.)
AT+CNBP=0x0002000000400183,0x000001E000000000,0x0000000000000021    //After returning to OK, measure the speed
AT+CNBP=0x0002000004400180,0x000001E000000000,0x000000000000003F   //If the speed doesn't improve, try this

Answer:

  • Under normal circumstances, SIM7600X has already dialed automatically when it is connected to the Windows system, no need to repeat the dialing, the repeated dialing will return NO CARRIER

  • If you still cannot dial up, please use the following command to change to the Windows default dial-up mode

    AT+CUSBPIDSWITCH=9001,1,1 
  • The display is turned off and the mobile network is not enabled, you can ignore it and go online directly;

  • After installing the driver, the network card shows that it is enabled

Set up as below:

AT+CGDCONT=1, "IPV6", "APN" //Switch to IPV6, different operators APN is different, pay attention to distinguish the settings
AT+CGDCONT=1, "IP", "APN" //Switch back to IPV4

  • Open the Raspberry Pi terminal and input the following commands:

sudo raspi-config
Select Interfacing Options -> Serial to turn off shell access and turn on the hardware serial port
ls -l /dev/serial*

The SIM7600X can send the following command plus carriage return, and successfully turn on the display after displaying OK.

ATE1

  • Linux dial-up:

  • Windows dial-up:

In this case, it may be that you have not successfully connected to the network, you can follow the steps below to troubleshoot: 1. First check the hardware connection:

  • Check if the MAIN antenna is connected properly;

  • Whether the connected SIM card can communicate and surf the Internet normally on mobile phones and other devices:

  • If the Raspberry Pi is connected, whether the module enters airplane mode;

2. After confirming that there is no problem with the hardware, the software can use these instructions:

  • Check if the sim card is in good contact: AT+CPIN?

  • Check if the network mode setting is correct: AT+CNMP?

  • Check the signal quality of the current environment: AT+CSQ

  • Check carrier access:AT+COPS?

  • Check internet connection:AT+CPSI?

  • Check for successful registration to the network: AT+CGREG?

Please confirm that there is a sim7600_4G_hat_init file in the current path The general operation is: download the sample program, after decompression, rename the c folder under the Raspberry folder to SIM7600X, and then copy the entire SIM7600X folder to the Raspberry Pi /home/pi directory, Enter the command line into the /home/pi/SIM7600X directory, and then execute the chmod 777 sim7600_4G_hat_init command.

It is recommended to use the more convenient

Or use the image that has been configured with the driver

Generally, it is the problem of baud rate, TTL level, and wiring, the details are as follows:

Support SIM standard (Standard) card, as shown in the figure below, if it is a Micro or Nano card, you need to add a card sleeve.

For more detailed steps, please refer to the following link. SIM7600X gets the latitude and longitude in units, we commonly use degrees as the unit, please see below for more details.

Insert the GPS antenna into the GNSS antenna holder and place the receiver label side down in the open outdoors (note that the rainy weather test can not), the power needs to wait about 1 minute to receive the positioning signal;

From left to right, they are (1) dimension, (2) longitude, (3) date, (4) time, (5) altitude, (6) speed, and (7) heading angle.

You can also install the driver to update the network card

Raspberry Pi 2B/zero, the user serial device number is ttyAMA0; you can use the following command line to confirm that serial0 is the selected serial device number, as follows:

Differences as shown below:

sample demo
Use SERIAL to log in to the Jetson Nano terminal
SIM7600 firmware upgrade failed, the prompt is shown below, how to solve?
SIM7600X connected to Raspberry Pi, how to open hotspot without burning Openwrt image?
How to turn a Raspberry Pi Zero W into a 3G 4G router
Use the WIN7 system, what should I do if the driver installation fails?
SIM7600 old driver
SIM7600 new driver
SIM7600X module NDIS dialing failure, what should I do if the driver cannot be installed?
RNDIS dial
NDIS dial-up self-starting Raspbian system image (driver installed)
No response when using SIM7600X on Arduino or other masters?
7600X_connect_Arduino
How to initialize the switch control pins of SIM7600?
What is the function of the com port for ttyUSB0-ttyUSB5 that appears under the Linux system?
How can I realize the module is recognized when using it in a Linux system?
What is the role of the AUX antenna, can not connect the MAIN antenna, only connect the AUX antenna?
How to debug SIM7600X via USB TO UART serial port?
What are the antenna parameters of SIM7600CE 4G HAT?
What is the power consumption of SIM7600CE 4G HAT when it loads 4g and gps at the same time?
What is the working current when connected to the Internet?
Why can I access the Internet with a regular cell phone SIM card that can make phone calls, but not with an IoT card (traffic card)?
When sending AT+CPIN?, return ERROR
What's the type of SIM card ?
SIM7600X SMS transmission failure, prompt +CMS ERROR? or CME ERROR and other errors?
How to set up SMS center number? (SMS center number is a kind of short message server. The SMS messages sent by cell phones need to be sent to the SMS center number first, and then forwarded to the other phone by the SMS center number, which is equivalent to an SMS relay station.)
How many SMS messages can the SIM7600CE 4G HAT save?
The command for SIM7600Xcall recording and playback is?
Some SIM card carriers require a VOLTE function to make calls, how to turn on or off the VOLTE function?
How to locate the base station for SIM7600X, what is the command?
Why is the positioning inaccurate and the coordinates obtained are different from those found online?
SIM7600X Positioning_via_uSTAR
SIM7600G-H_4G_for_Jetson_Nano_Precisely_Locates_in_Gaode_Map_API
SIMXXX_Locates_My_Location_on_Gaode_Map
AT PORT does not get the location information, HS-USB NMEA port can get it, what is the problem?
What should I do if I can't receive a GPS signal and don't get the location information?
What does the positioning information obtained by SIM7600X via AT+CGPSINFO represent respectively?
Why is my dial-up internet connection so slow?
Why does it return NO CARRIER after the computer NDIS dials?
SIM7600X dial-up Driver
How to get SIM7600X to switch to IPV6 after dial-up?
Why can't I control the module with UART on Raspberry Pi, can't open ttyS0 through minicom, prompting any ttyS0?
Why is the command sent not displayed after sending an AT command and returning OK?
What is the difference between RNDIS, NDIS, PPP, and ECM dialing methods?
Raspberry_Pi_networked_via_RNDIS
A7600X_RNDIS_Dail-up_Networking
SIM7600X_ECM_Dail-up
SIM820X_RNDIS_Dial-Up
NDIS_Dial-Up
Windows_NDIS_Dail-Up
Windows RNDIS_Dial-Up
What should I do if the network is abnormal?
When compiling the BCM2835 library, Makefile:327:recipe for target 'aclocal.m4' failed ?
When executing the chmod 777 sim7600_4G_hat_init command, an error is reported: "chmod: cannot access 'sim7600_4G_hat_init': No such file or directory"How to deal with it?
AT$QCRMCALL=1,1
Waveshare SIM7600CE-CNSE 4G HAT for Raspberry Pi 4G 3G 2G GNSSOpenELAB
Logo